

ELECTROMAGNETIC COMPLIANCE TEST REPORT

For

LED Wash Light

Model: PHN005, PHN007, PHN009, PHN012, PHN013, PHN014, PHN016, PHN018, PHN020, PHN021, PHN023, PHN026, PHN027, PHN029, PHN031, PHN032, PHN035, PHN036, PHN037, PHN040, PHN042, PHN043, PHN046, PHN053, PHN054, PHN055, PHN056, PHN057, PHN060, PHN061, PHN062, PHN063, PHN064, PHN065, PHN066, PHN067, PHN069, PHN072, PHN073, PHN074, PHN075, PHN076, PHN077, PHN078, PHN080, PHN081, PHN082, PHN083, PHN084, PHN085, PHN086, PHN087, PHN088, PHN089, PHN090, PHN091, PHN092, PHH028, PHH009, PHH013.

Brand Name: PHOENIXLIGHTING

Report No.: ENC1901280GZ78E1

Date of Issue: Jul. 23, 2018

Prepared For

Guangdong Phoenix Lighting Co., Ltd.

No.38 Yagang South Road, Shijing Town, Guangzhou, Guangdong, China.

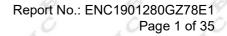
TEL: +86-20-26290610

Prepared By

East Notice Certification Service Co., Ltd.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District,
Guangzhou City, China

TEL: +86-20-2331 4234


FAX: +86-20-8256 8534

The results shown in this test epoint refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City

East Notice Certification

Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	3
2. SYSTEM DESCRIPTION	4
3. PRODUCT INFORMATION	<u> </u>
4. SUPPORT EQUIPMENT	6
5. TEST FACILITY	7
6. EN 55015 LINE CONDUCTED EMISSION TEST	8
6.1. TEST EQUIPMENT OF CONDUCTED EMISSION TEST	8
6.2. LIMITS OF LINE CONDUCTED EMISSION TEST AT MAINS TERMINALS	8
6.3. BLOCK DIAGRAM OF TEST SETUP	8
6.4. PROCEDURE OF LINE CONDUCTED EMISSION TEST	<u></u>
6.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	10
7. EN 55015 RADIATED ELECTROMAGNETIC DISTURBANCE TEST	12
7.1. TEST EQUIPMENT OF RADIATED ELECTROMAGNETIC DISTURBANCE TEST	
7.2. LIMITS OF RADIATED ELECTROMAGNETIC DISTURBANCE IN THE RANGE 9 KHz to 30 MHz .	
7.3. BLOCK DIAGRAM OF TEST SETUP	13
7.4. TEST PROCEDURE	13
7.5. TEST RESULTS OF RADIATED ELECTROMAGNETIC DISTURBANCE	14
8. EN 61000-3-2 POWER HARMONICS TEST	17
8.1. TEST EQUIPMENT OF POWER HARMONICS TEST	17
8.2. BLOCK DIAGRAM OF TEST SETUP	17
8.3. RESULT	18
9. EN 61000-3-3 VOLTAGE FLUCTUATION / FLICKER TEST	19
9.1. TEST EQUIPMENT OF VOLTAGE FLUCTUATION / FLICKER TEST	19
9.2. BLOCK DIAGRAM OF TEST SETUP	19
9.3. TEST DATA	19
9.3. RESULT	20
10. IEC 61000-4-2 ESD IMMUNITY TEST	21
10.1. TEST EQUIPMENT OF ESD TEST	21
10.2. BLOCK DIAGRAM OF TEST SETUP	21
10.3. TEST PROCEDURE	21
10.4 DEDECDMANCE & DESULT	22

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Page 2 of 35

11. IEC 61000-4-3 TEST	[©]	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	23
11.1. TEST EQUIPMENT	······································			·····	23
11.2. BLOCK DIAGRAM OF TEST SETUP	<i>*</i>	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			23
11.3. TEST PROCEDURE					24
11.4. PERFORMANCE & RESULT	47 5	04 50	4 50	47 50	25
12. IEC 61000-4-4 TEST	4	47	47	47	26
12.1. TEST EQUIPMENT	<u></u>	<u>,</u>	<u>`</u>	<u>.</u>	26
12.2. BLOCK DIAGRAM OF TEST SETUP	47	047 0	47 0	4) (O	26
12.3. TEST PROCEDURE	45		A)	A7	27
12.4. PERFORMANCE & RESULT		<u>Ó</u>	<u> </u>	<u> </u>	27
13. IEC 61000-4-5 SURGE IMMUNITY TES	T	0.65	w	45C	28
13.1. TEST EQUIPMENT OF SURGE TEST	·			<u>.</u>	28
13.2. BLOCK DIAGRAM OF TEST SETUP	<u>č</u>	<u>6</u>	<u>&</u>		28
13.3. TEST PROCEDURE		r,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	29
13.4. PERFORMANCE & RESULT				······································	29
14. IEC 61000-4-6 TEST				/ 9	30
14.1. TEST EQUIPMENT		,,,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			30
14.2. BLOCK DIAGRAM OF TEST SETUP	<u> </u>	04 50	4 20	4	30
14.3. TEST PROCEDURE	<u> </u>	4	4	4	31
14.4. PERFORMANCE & RESULT	<u>,</u>	<u>.</u>	<u>.</u>	<u>,</u>	31
15. IEC 61000-4-8 TEST	4	047 0	4 0	4 0	32
15.1. TEST EQUIPMENT	47		47	A) T	32
15.2. BLOCK DIAGRAM OF TEST SETUP	<u>, 0</u>	0	0	<u>, 0</u>	32
15.3. TEST PROCEDURE	45	0.45,C	Q. O	45 C	33
15.4. PERFORMANCE & RESULT					33
16. IEC 61000-4-11 TEST	<u>.</u>	<u>ó</u>	<u>ó</u>	<u>.</u>	34
16.1. TEST EQUIPMENT		a,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	34
16.2. BLOCK DIAGRAM OF TEST SETUP	· · · · · · · · · · · · · · · · · · ·			······································	34
16.3. TEST PROCEDURE					35
16.3. TEST PROCEDURE					35

The results shown in this test epont refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Page 3 of 35

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	LED Wash Light						
Model	PHN005, PHN007, PHN009, PHN012, PHN013, PHN014, PHN016, PHN018, PHN020, PHN021, PHN023, PHN026, PHN027, PHN029, PHN031, PHN032, PHN035, PHN036, PHN037, PHN040, PHN042, PHN043, PHN046, PHN053, PHN054, PHN055, PHN056, PHN057, PHN060, PHN061, PHN062, PHN063, PHN064, PHN065, PHN065, PHN067, PHN069, PHN072, PHN073, PHN074, PHN075, PHN076, PHN077, PHN078, PHN080, PHN081, PHN082, PHN083, PHN084, PHN085, PHN086, PHN087, PHN088, PHN089, PHN090, PHN091, PHN092, PHH028, PHH009, PHH013.						
Model Difference:	The series models have same electrical structure as PHN076, except for the different appearance and power.						
Brand:	PHOENIXLIGHTING						
Applicant:	Guangdong Phoenix Lighting Co., Ltd.						
	No.38 Yagang South Road, Shijing Town, Guangzhou, Guangdong, China.						
Manufacturer:	Guangdong Phoenix Lighting Co., Ltd.						
14' 204' 30	No.38 Yagang South Road, Shijing Town, Guangzhou, Guangdong, China.						
Type of Test:	EMC Directive 2014/30/EU for CE Marking						
Technical Standards:	EN 55015:2013+A1:2015 EN 61000-3-2:2014 EN 61000-3-3:2013 EN 61547:2009						
File Number:	ENC1901280GZ78E1						
Date of test:	Jul. 13, 2018 - Jul. 23, 2018						
Deviation:	None						
Condition of Test Sample:	Normal						

The above equipment was tested by East Notice Certification Service Co., Ltd. for compliance with the requirements set forth in EMC Directive 2014/30/EU and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements. Should any objections to the test reports occurred, should submit it to the company within ten days since the issuing of the report, Fail to accept.

The test results of this report relate only to the tested Sample identified in this report.

Checked By

Yenig Jul. 23, 2018

Authorized By

Ray Zhou Jul. 23, 2018

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be as sessable and confirmed at http://www.enc-lab.com.

East Notice Certification 1/F, Haohu Dongpu To

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 4 of 35

EUT Test Procedure:

- 1. Connect EUT and peripheral devices if need.
- 2. Power on the EUT, the EUT begins to work.
- 3. Make sure the EUT operates normally during the test.

The regulas shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Page 5 of 35

Housing Type : Metal

Rated voltage : 90-240V~, 50/60Hz

Rated power : 300W

Protection Class : |

I/O Port Information (⊠Applicable ☐Not Applicable)

	I/O Port of EUT									
	/O Port Type	Q'TY	Cable	Tested with						
14,7	AC Input port	304"	1,04	1,04°						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

Tel:+86-020-2331 4234

E-mail: enc@ enc-lab.com

Fax:+86-020-8256 8534

Http:// www.enc-lab.com

Page 6 of 35

4. SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable
	÷ - ÷	4	÷-	÷ - ÷	A

**Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

The regulas shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Tel:+86-020-2331 4234

E-mail: enc@ enc-lab.com

Fax:+86-020-8256 8534

Http://www.enc-lab.com

Page 7 of 35

Location: 1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District,

Guangzhou City, China

Description: There is one 3m semi-anechoic an area test sites and two line conducted labs for

final test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4 and CISPR

15/EN 55015 requirements.

Site Filing: The site description is on file with the Federal Communications Commission, 7435

Oakland Mills Road, Columbia, MD 21046.

Instrument Tolerance: All measuring equipment is in accord with ANSI C63.4 and CISPR 22 requirements

that meet industry regulatory agency and accreditation agency requirement.

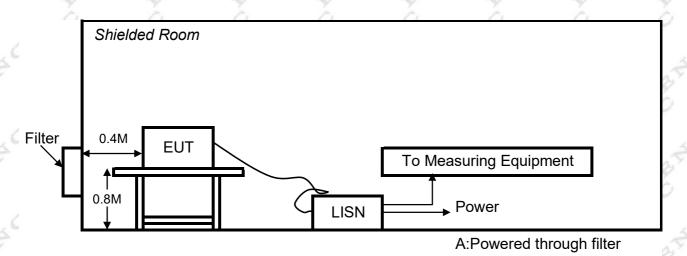
East Notice Certification

Page 8 of 35

6. EN 55015 LINE CONDUCTED EMISSION TEST

6.1. TEST EQUIPMENT OF LINE CONDUCTED EMISSION TEST

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	Aeroflex	2399A	N/A	03/19/2018	03/18/2019
Biconilog Antenna	ETS	3142C	N/A	03/19/2018	03/18/2019
Multi-device Controller	ETS	2090	N/A	03/19/2018	03/18/2019


6.2. LIMITS OF LINE CONDUCTED EMISSION TEST AT MAINS TERMINALS

Farance Bound	Maximum RF Line Voltage						
Frequency Range	Q.P.(dBuV)	Average(dBuV)					
9 KHz-50 KHz	045 110 045	045 .045 .045					
50 KHz-150 KHz	90-80	15 - 15 A					
150 kHz-500 kHz	66-56	56-46					
500 kHz-2.51 MHz	00 56 00 5	045 046 045					
2.51 MHz-3.0 MHz	73	63					
3.0 MHz-5.0 MHz	<u></u>	0 46 0					
5.0 MHz-30.0 MHz	00 60 00	0.50 0.55					

^{**}Note: 1. At the transition frequency, the lower limit applies.

6.3. BLOCK DIAGRAM OF TEST SETUP

East Notice Certification

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 50 KHz to 150 KHz and 150 KHz to 0.5 MHz.

Page 9 of 35

6.4. PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per EN 55015 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per EN 55015.
- 3) All I/O cables were positioned to simulate typical actual usage as per EN 55015.
- 4) The EUT received AC230V/50Hz power through the outlet socket under the turntable.
- 5) All support equipments received AC230V/50Hz power from socket under the turntable, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver
- 7) Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The test mode(s) were scanned during the test
- 10) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions.
- 11) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

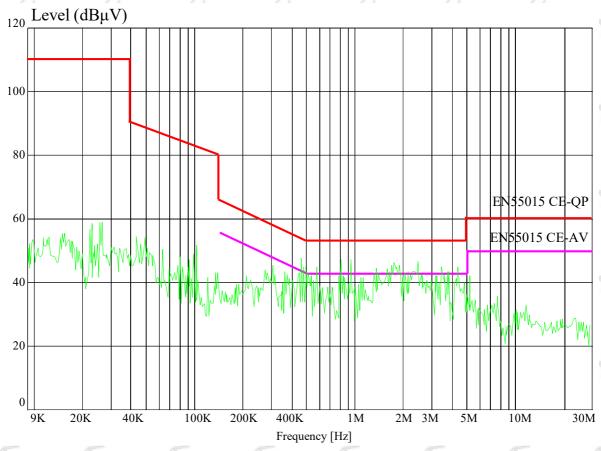
The test data of the worst case condition(s) was reported on the Summary Data page

East Notice Certification

Tel:+86-020-2331 4234

E-mail: enc@ enc-lab.com

Fax:+86-020-8256 8534

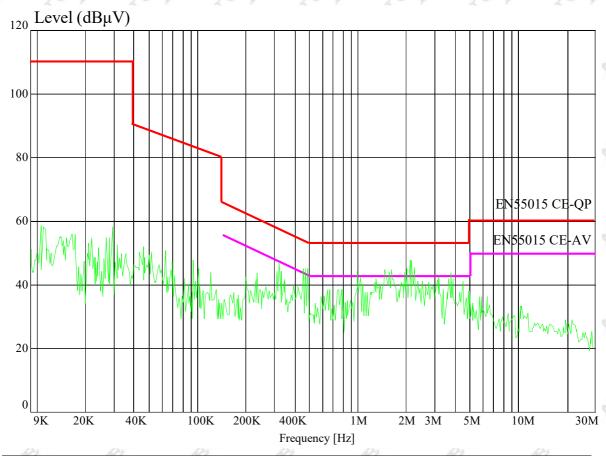

Http:// www.enc-lab.com

Page 10 of 35

6.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

TEST RESULT OF LINE CONDUCTED EMISSION-N

No. MK	Freq.	Level	Limit	Over	Remark	Pol/Phase
4	MHz	dBuA	dBuA	dB	4	4
1	0.561	46.70	56.00	-9.30	Peak	NEUTRAL
2 304	0.819	47.05	56.00	-8.95	Peak	NEUTRAL
3 *	0.930	47.36	56.00	-8.64	Peak	NEUTRAL
4	0.561	36.29	46.00	-9.71	Average	NEUTRAL
5	0.819	37.10	46.00	-8.90	Average	NEUTRAL
6 *	0.930	37.29	46.00	-8.71	Average	NEUTRAL
4 4	4 4	1 1	2 1	4 1	1 1	1.1


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Page 11 of 35

TEST RESULT OF LINE CONDUCTED EMISSION-L

No. MK	Freq.	Level	Limit	Over	Remark	Pol/Phase)
\$ O4	MHz	dBuA	dBuA	dB	045	045	04
125	0.986	46.20	56.00	-9.80	Peak	LINE	
2	1.533	46.46	56.00	-9.54	Peak	LINE	
3 *	2.061	47.98	56.00	-8.02	Peak	LINE	04
4	0.986	36.18	46.00	-9.82	Average	LINE	h.
50	1.533	36.48	46.00	-9.52	Average	LINE	
6*	2.061	38.06	46.00	-7.94	Average	LINE	04

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

Page 12 of 35

7. EN 55015 RADIATED ELECTROMAGNETIC DISTURBANCE TEST

7.1. TEST EQUIPMENT OF RADIATED ELECTROMAGNETIC DISTURBANCE TEST

Description	Manufacturer	Model Identifier		Cal. Date	Cal. Due	
Spectrum Analyzer	Aeroflex	2399A	N/A	03/19/2018	03/18/2019	
Biconilog Antenna	ETS	3142C	N/A	03/19/2018	03/18/2019	
Multi-device Controller	ETS	2090	N/A	03/19/2018	03/18/2019	

7.2. LIMITS OF RADIATED ELECTROMAGNETIC DISTURBANCE IN THE RANGE 9 KHz to 30 MHz

	Limits for Loop Diameter							
Frequency Range	dB(uA) *							
	2m	3m	4m					
9 KHz-70 KHz	88	81	75					
70 KHz-150 KHz	88 to 58 * *	81 to 51 * *	75 to 45 * *					
150 kHz-3.0 MHz	58 to 22 * *	51 to 15 * *	45 to 9 * *					
3.0 MHz-30 MHz	0 22 0 5	15 to 16 * * *	9 to 12 * * *					

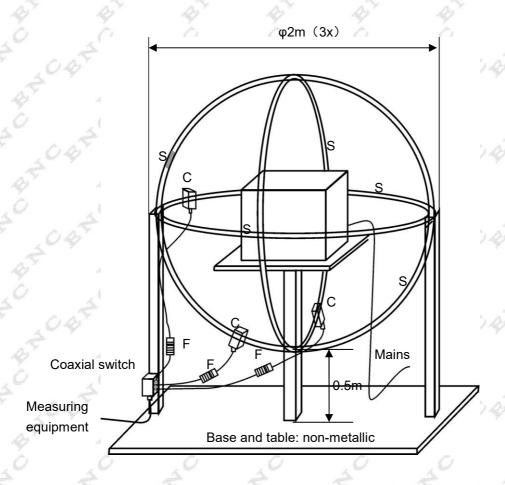
Note: * At the transition frequency, the lower limit applies.

- * * Decreasing linearly with the logarithm of the frequency. For electrodeless lamps and luminaries, the limit in the frequency range of 2.2 MHz to 3.0 MHz is 58 dB(uA) for 2m, 51 dB(uA) for 3m and 45 dB(uA) for 4m loop diameter.
- * * * Increasing linearly with the logarithm of the frequency.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

Tel:+86-020-2331 4234

E-mail: enc@ enc-lab.com


Fax:+86-020-8256 8534

Http://www.enc-lab.com

East Notice Certification

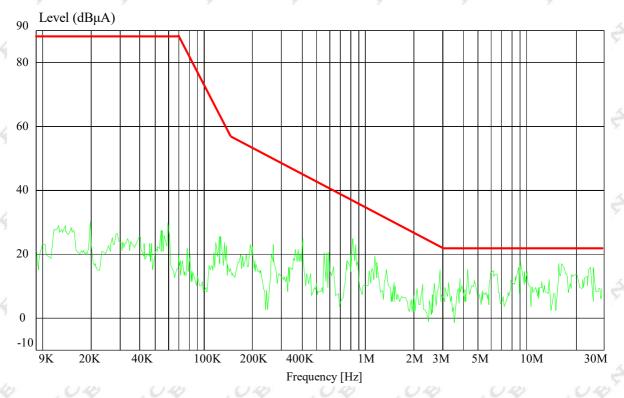
7.3. BLOCK DIAGRAM OF TEST SETUP

7.4. TEST PROCEDURE

The magnetic component shall be measured by means of a loop antenna as described in EN 55015. The lighting equipment shall be placed in the centre of the antenna, and the position is not critical.

The test object was operated at its upper limit of its rated voltage and its rated frequency. The induced current in the loop antenna is measured by means of a current probe (1V/A) and the CISPR measuring receiver. By means of a coaxial switch the three field directions can be measured in sequence. Each value shall fulfill the requirements given.

The results shown in this test tenoit refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.


1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 14 of 35

7.5. TEST RESULTS OF RADIATED ELECTROMAGNETIC DISTURBANCE

Radiated Electromagnetic Disturbance Measurement

Site: #1 Phase: L1 Temperature: 20°C

Limit: EN55015 Magnetic Test Power: AC 230V Humidity: 52%

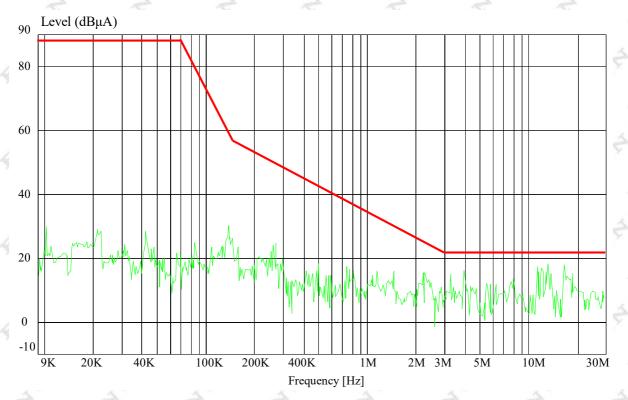
EUT: LED Wash Light

M/N: PHN076 Mode: Lighting

East Notice Certification

Note:

5	105	Reading	Correct	Measure-	25	00	50	45 O
No. MK	Freq.	Level	Factor	ment	Limit	Over	The state of the s	The second
4	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment
	4.109	15.42	0.32	15.74	22.00	-6.26	QP	- in C
2	6.133	15.63	0.41	16.04	22.00	-5.96	QP O	4 ,0
3.5	8.961	15.95	0.50	16.45	22.00	-5.55	QP	45
40	9.026	17.50	0.50	18.00	22.00	-4.00	QP	, ò
5 *	15.406	17.55	0.62	18.17	22.00	-3.83	QP	15 C)
6	24.564	16.92	0.72	17.64	22.00	-4.36	QP	The state of the s


The results shown in this test epoint refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 15 of 35

Radiated Electromagnetic Disturbance Measurement

Site: #1 Phase: L2 Temperature: 20 °C Limit: EN55015 Magnetic Test Power: AC 230V Humidity: 52%

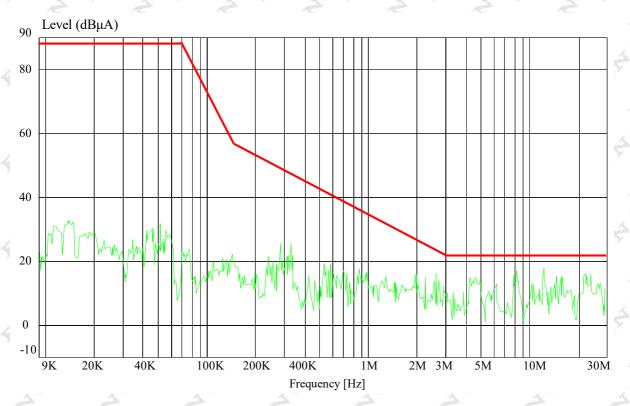
EUT: LED Wash Light

M/N: PHN076 Mode: Lighting

East Notice Certification

Note:

40	40	Reading	Correct	Measure-	40		50	30
No. MK	Freq.	Level	Factor	ment	Limit	Over	7 0	0, 0
17	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment
1	3.214	15.50	0.26	15.76	22.00	-6.24	QP	40
2	3.926	16.36	0.31	16.67	22.00	-5.33	QP	- E
3	7.950	12.21	0.47	12.68	22.00	-9.32	QP.	4 40
40	11.919	17.43	0.56	17.99	22.00	-4.01	QP	4
5	13.893	18.65	0.59	19.24	22.00	-2.76	QP	,0
6 *	17.028	18.66	0.64	19.30	22.00	-2.70	T QP	D 0


The results shown in this test epoint refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 16 of 35

Radiated Electromagnetic Disturbance Measurement

Temperature: 20°C Site: #1 Phase: L3 Limit: EN55015 Magnetic Test AC 230V Humidity:

Power:

EUT: LED Wash Light

M/N: PHN076 Mode: Lighting

East Notice Certification

Note:

No. MK	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	\$ O	25° 0
THE STATE OF THE S	MHz	dBuA	dB	dBuA	dBuA	dB	Detector	Comment
1	4.093	15.68	0.32	16.00	22.00	-6.00	QP	49
2	4.548	15.62	0.34	15.96	22.00	-6.04	QP	- E
3	6.166	12.62	0.41	13.03	22.00	-8.97	QP	Ø, 70
40	8.081	17.72	0.47	18.19	22.00	-3.81	QP	4)
5 *	12.725	17.94	0.57	18.51	22.00	-3.49	QP	,0
6	22.105	17.01	0.70	77.71	22.00	-4.29	QP O	05 O

suks shown in this test report by ENC, this document ca refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is most be reproduced except in full with our prior written permission. The document is available on request and the brief assessable and confirmed at http://www.enc-lab.com.

> 1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City

Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 17 of 35

8. EN 61000-3-2 POWER HARMONICS TEST

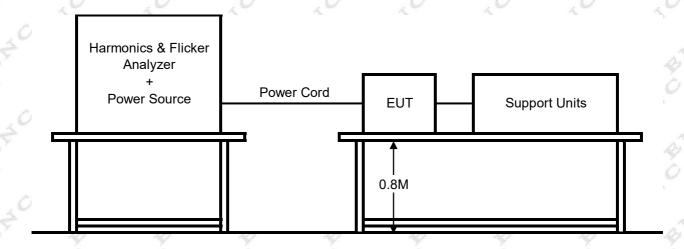
POWER HARMONICS MEASUREMENT

Port : AC mains

Basic Standard : EN 61000-3-2:2014

 Limits
 : ⊠CLASS A

 Tester
 : Sam Liu


 Temperature
 : 20 °C

 Humidity
 : 52%

8.1. TEST EQUIPMENT OF POWER HARMONICS TEST

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Harmonic Emission Flicker	California instruments	500LIX-400	N/A	03/19/2018	03/18/2019

8.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

8.3. RESULT PASS.

Report No.: ENC1901280GZ78E1 Page 18 of 35

Harmonic current results

4	40 40	4	40 40	4
Hn	Harms(max) [A]	Limit [%]	Limit[A]	Result
1,5	1.380	7 1.5	15 15	4.3
2 3	0.064	5.886	1.080	PASS
3	0.351	15.242	2.300	PASS
4	0.051	11.803	0.430	PASS
5	0.207	18.138	1.140	PASS
6	0.042	14.098	0.300	PASS
7	0.181	23.558	0.770	PASS
8	0.033	14.302	0.230	PASS
9	0.055	13.628	0.400	PASS
10	0.026	14.302	0.184	PASS
11	0.023	7.120	0.330	PASS
12	0.018	11.672	0.153	PASS
13	0.017	8.056	0.210	PASS
14	0.015	11.479	0.131	PASS
9 15	0.017	11.278	0.150	PASS
16	0.011	9.807	0.115	PASS
17	0.012	9.256	0.132	PASS
18	0.011	11.057	0.102	PASS
19	0.010	8.762	0.118	PASS
20	0.007	7.151	0.092	PASS
21	0.009	8.784	0.107	PASS
22	0.007	7.832	0.084	PASS
23	0.008	7.672	0.098	PASS
24	0.004	4.882	0.077	PASS
25	0.008	8.354	0.090	PASS
26	0.004	5.295	0.071	PASS
27	0.007	7.927	0.083	PASS
28	0.004	5.696	0.066	PASS
29	0.007	8.435	0.078	PASS
30	0.002	3.082	0.061	PASS
31	0.007	9.012	0.073	PASS
32	0.002	3.241	0.058	PASS
33	0.004	5.529	0.068	PASS
34	0.002	3.481	0.054	PASS
35	0.004	5.874	0.064	PASS
36	0.002	3.686	0.051	PASS
37	0.003	4.622	0.061	PASS
38	0.002	3.916	0.048	PASS
39	0.002	3.241	0.058	PASS
40	0.001	1.659	0.046	PASS

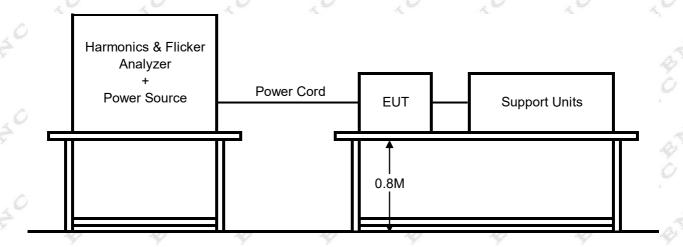
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be as sessable and confirmed at http://www.enc-lab.com.

Page 19 of 35

9. EN 61000-3-3 VOLTAGE FLUCTUATION / FLICKER TEST

VOLTAGE FLUCTUATION/FLICKER MEASUREMENT

Port : AC mains


Basic Standard : EN 61000-3-3: 2013 **Limits** : §5 of EN 61000-3-3

Tester: Sam LiuTemperature: 20° CHumidity: 52%

9.1. TEST EQUIPMENT OF VOLTAGE FLUCTUATION / FLICKER TEST

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Harmonic Emission Flicker	California	500LIX-400	O N/A	03/19/2018	03/18/2019
Trafficilic Effission FileRei	instruments	300LIX-400	1 N/A	03/19/2010	03/10/2019

9.2. BLOCK DIAGRAM OF TEST SETUP

Note:

- 1. The test supply voltage (open-circuit voltage) was the rated voltage of the EUT. The test voltage was maintained within ±2 % of the nominal value. The frequency was 50 Hz ±0.5 %.
- 2. The voltage fluctuations and flicker were measured at the supply terminals of the EUT.
- 3. The observation period, Tp, for the assessment of flicker values by flicker measurement, flicker simulation, or analytical method was:
 - for Pst, Tp = 10 min;
 - for Plt, Tp = 2 h.

The observation period included that part of the whole operation cycle in which the EUT produces the most unfavourable sequence of voltage changes.

The results shown in this test tenoit refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 20 of 35

9.3. RESULT

Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: LED Wash Light

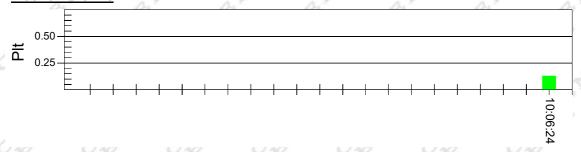
Tested by: Sam Liu

Test category: All parameters (European limits)

Test Margin: 100

Test date: 2018-07-22 Start time: 09:56:24 End time: 10:06:24

Test duration (min): 10


Comment: On

Customer: Guangdong Phoenix Lighting Co., Ltd.

Test Result: Pass Source qualification: OK

Plt and limit line

Parameter values recorded during the test:

Vrms at the end of test (Volt): 230.1

Test limit (%): 3.30 Highest dt(%): -0.26**Pass** Time(mS) > dt: 0.0 Test limit (mS): 500.0 **Pass** Highest dc (%): 0.00 Test limit (%): 3.30 Pass Highest dmax (%): -0.16Test limit (%): 4.00 **Pass** 1.000 Highest Pst (10 min. period): 0.162 Test limit: Pass Test limit: 0.650 Highest Plt (2 hr. period): 0.146 **Pass**

The results shown in this test teport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 21 of 35

10. IEC 61000-4-2 ESD IMMUNITY TEST

ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port : Enclosure

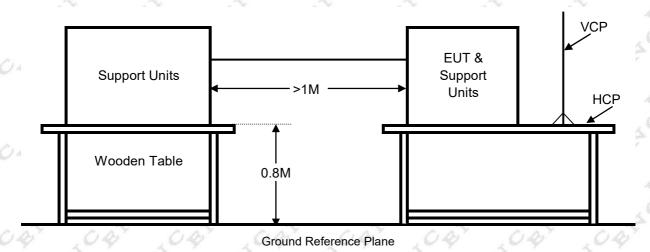
Basic Standard : IEC 61000-4-2:2008

Test Level : ±8 kV (Air Discharge)

±4 kV (Contact Discharge)

±4 kV (Indirect Discharge)

Standard require : B


Tester: Sam LiuTemperature: 20° CHumidity: 52%

10.1. TEST EQUIPMENT OF ESD TEST

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
ESD Simulator	EM-Test	EST883	N/A	03/19/2018	03/18/2019

10.2. BLOCK DIAGRAM OF TEST SETUP

(The 470 k ohm resistors are installed per standard requirement)

10.3. TEST PROCEDURE

The EUT was located 0.1 m minimum from all side of the HCP.

The support units were located 1 m minimum away from the EUT.

EUT worked with resistance load, and make sure EUT worked normally.

Actives the communication function if the EUT with such port(s).

As per the requirement of EN 55015: Contact discharge is the preferred test method. 20 discharges (10 with positive and 10 negative polarity) shall be applied on each accessible metal part of the enclosure. In case of a non-conductive enclosure, discharges shall be applied on the horizontal or vertical coupling planes as specified in IEC 61000-4-2.

Air discharges shall be used where contact discharges cannot be applied.

The results shown in this test cook refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 22 of 35

The following test condition was followed during the tests.

Note: As per the A2 to IEC 61000-4-2, a bleed resistor cable is connected between the EUT and HCP during the test.

The electrostatic discharges were applied as follows:

Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)
Mini 20 /Point	±2kV; ±4kV	Contact Discharge	Pass
Mini 10 /Point	±2kV; ±4kV	Indirect Discharge HCP (Front)	Pass
Mini 10 /Point	±2kV; ±4kV	Indirect Discharge VCP (Left)	Pass
Mini 10 /Point	±2kV; ±4kV	Indirect Discharge VCP (Back)	Pass
Mini 10 /Point	±2kV; ±4kV	Indirect Discharge VCP (Right)	Pass
Mini 10 /Point	±2kV; ±4kV;±8kV;	Air Discharge	Pass

10.4. PERFO	RMANCE 8	RESULT 4						
☐ Criteria A:	The appara	itus continues	s to operate a	as intended	. No degrada	ation of per	formance or	r loss of
	function is	allowed belov	w a performa	ance level s	pecified by t	he manufac	cturer, when	the
	apparatus	is used as int	tended. In sc	me cases t	he performa	nce level m	ay be repla	ced by a
47	permissible	e loss of perfo	ormance.	Dy Y	47	47		~ 4
.0	.0			0	.0	.0	.0	
⊠Criteria B:	The appara	atus continue	s to operate	as intended	l after the te	st. No degra	adation of p	erformance
	or loss of f	unction is allo	wed below a	a performan	ce level spe	cified by the	e manufactı	urer, when
4	the appara	itus is used a	s intended. I	n some cas	es the perfo	rmance lev	el may be re	eplaced by a
.0	permissible	e loss of perfo	ormance. Du	ring the tes	t, degradatio	n of perforr	mance is ho	wever
1. 1. The	allowed.	1. 15	1. 15		The same of	The same	1. 15	1.15
□Criteria C:	Temporary	loss of funct	ion is allowe	d, provided	the function	s self recov	erable or ca	an be
0	restored by	y the operatio	n of controls	Ó	0	0	Ó	
The state of the s		A THE			Tild I			a Trial
04			204		40.		04	100
Dis	Di	y D	3	20	Di	Di	Di	4 1
			⊠ PASS		FAIL			

East Notice Certification

Page 23 of 35

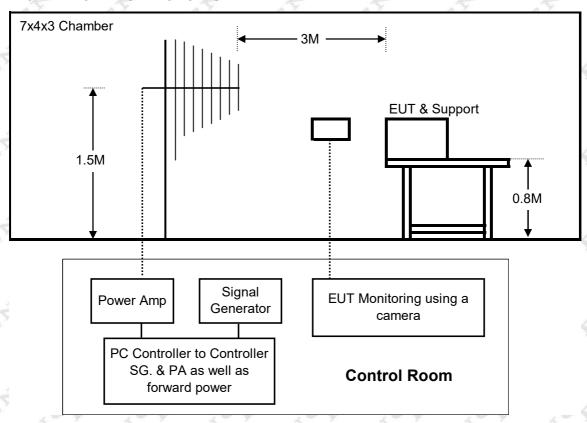
11. IEC 61000-4-3 TEST

RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

Basic Standard : IEC 61000-4-3:2010

Test Level: 3V/m with 80% AM. 1kHz Modulation.


Standard require : A

Tester: Sam LiuTemperature: 20° CHumidity: 52%

11.1. TEST EQUIPMENT

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Signal Generator	IFA	2023B	N/A	03/19/2018	03/18/2019
Power Amplifier	AR	150W1000	N/A	03/19/2018	03/18/2019
Power Antenna	AR	25S1G4A	O N/A	03/19/2018	03/18/2019

11.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be as sessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 24 of 35

11.3. TEST PROCEDURE

The EUT was located at the edge of supporting table keep 3 meter away from transmitting antenna, it just the calibrated square area of field uniformity. The support units were located outside of the uniformity area, but the cable(s) connected with EUT were exposed to the calibrated field as per IEC 61000-4-3.

EUT worked with resistance load, and make sure EUT worked normally.

Setting the testing parameters of RS test software per IEC 61000-4-3.

Performing the test at each side of with specified level (3V/m) at 1% steps and test frequency from 80MHz to 1000MHz and 1400MHz to 2700MHz.

Recording the test result in following table.

It is not necessary to perform test as per annex A of EN 55015 if the EUT doesn't belong to TTE product.

IEC 61000-4-3 Final test conditions:

Test level: 3V/m

Steps: 1 % of fundamental

Dwell Time : 1 sec

East Notice Certification

DWCII TIME .	1 300	AG AG	A-C7	40	40 40
Range (MHz)	Field	Modulation	Polarity	Position	Result (Pass/Fail)
80-1000 1400-2000	3V/m	АМ	04H	Front	Pass
80-1000 1400-2000	3V/m	AM	н�	Left	Pass
80-1000 1400-2000	3V/m	АМ	000	Back	Pass
80-1000 1400-2000	3V/m	AM	Н	Right	Pass
80-1000 1400-2000	3V/m	AM A	V	Front	Pass
80-1000 1400-2000	3V/m	AM	O O O	Left	Pass
80-1000 1400-2000	3V/m	% AM %	v ő	Back	Pass
80-1000 1400-2000	3V/m	AM	04V	Right	Pass

Page 25 of 35

11.4. PERFORMANCE & RESULT

☑Criteria A: The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
 ☐Criteria B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
 ☐Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be

			⋈ PASS	□ FΔII			
C. O. Tild	a gin	a gil	C. of Find	C. O. Tala	C. O. Till	a gin	a Time

restored by the operation of controls.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is such of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

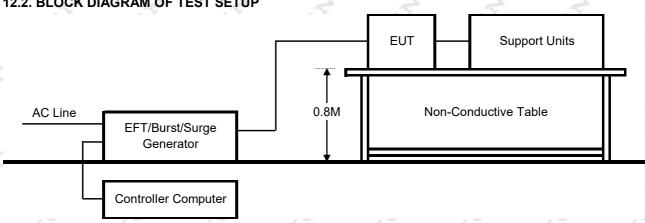
Page 26 of 35

12. IEC 61000-4-4 TEST

ELECTRICAL FAST TRANSIENTS/BURST IMMUNITY TEST

Port On Power Supply Lines IEC 61000-4-4:2012 **Basic Standard**

Test Level +/- 1kV for Power Supply Lines


Standard require В

Tester 🔷 Sam Liu **Temperature** 20℃ Humidity

12.1. TEST EQUIPMENT

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Compact Generator	EM-Test	UCS500M	N/A	03/19/2018	03/18/2019
Capacitive Clamp	EM-Test	HY21-EFTC	N/A	03/19/2018	03/18/2019
CDN for Telecom Port	EM-Test	CNV504S1	O N/A	03/19/2018	03/18/2019

12.2. BLOCK DIAGRAM OF TEST SETUP

sults shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief ation for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City

Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 27 of 35

12.3. TEST PROCEDURE

The EUT and support units were located on a wooden table 0.8m away from ground reference plane.

A 1.0 meter long power cord was attached to EUT during the test.

The length of communication cable between communication port and clamp was keeping within 1 meter.

EUT worked with resistance load, and make sure EUT worked normally.

Related peripherals work during the test.

Recording the test result as shown in following table.

Test conditions:

Impulse Frequency: 5 kHz

Tr/Th: 5/50ns

Burst Duration: 15ms Burst Period: 300ms

Inject Line		Voltage kV	Inject Method	Result (Pass/Fail)	
	Q L+N	+ /- 1	Direct	Pass	

12.4. PERFORMANCE & RESULT

□Criteria A:	A: The apparatus continues to operate as intended.	No degradation of performance or loss of
45	function is allowed below a performance level spec	cified by the manufacturer, when the
Ó	apparatus is used as intended. In some cases the	performance level may be replaced by a
045	permissible loss of performance.	104th 104th 104th
⊠Criteria B:	B: The apparatus continues to operate as intended a	after the test. No degradation of performance
6	or loss of function is allowed below a performance	level specified by the manufacturer, when the
	apparatus is used as intended. In some cases the	performance level may be replaced by a
04	permissible loss of performance. During the test, d	egradation of performance is however
4 T	allowed.	4º 4º 4º
□Criteria C:	C: Temporary loss of function is allowed, provided th	e functions self recoverable or can be
04	restored by the operation of controls.	204" 204" 204"
45	T AT AT AT	AT AT AT
-10	30 30 30	0 30 30 3
	⊠ PASS □	FAIL
No.	Early Marry Marry	Many Many Many

The results shown in this test cook refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification

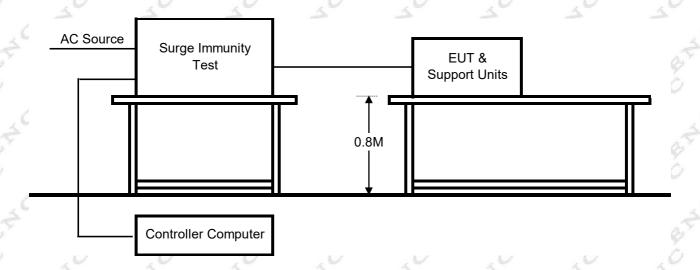
Page 28 of 35

13. IEC 61000-4-5 SURGE IMMUNITY TEST

SURGE IMMUNITY TEST

Port : On Power Supply Lines
Basic Standard : IEC 61000-4-5:2014
Requirements : +/- 1kV (Line to Line)

+/- 2kV (Line to Ground)


Standard require : B

Tester: Sam LiuTemperature: 20° CHumidity: 52%

13.1. TEST EQUIPMENT OF SURGE TEST

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Compact Generator	EM-Test	UCS500M	N/A	03/19/2018	03/18/2019
Capacitive Clamp	EM-Test	HY21-EFTC	O N/A	03/19/2018	03/18/2019
CDN for Telecom Port	EM-Test	CNV504S1	N/A	03/19/2018	03/18/2019

13.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 29 of 35

13.3. TEST PROCEDURE

The EUT and support units were located on a wooden table 0.8 m away from ground floor.

EUT worked with resistance load, and make sure EUT worked normally.

Recording the test result as shown in following table.

Test conditions:

Voltage Waveform : 1.2/50 us

Current Waveform : 8/20 us

Polarity : Positive/Negative Phase angle : 0°, 90°, 270°

Number of Test : 5

Coupling Line	Line Voltage (kV)		ng Line Voltage (kV) Polarity Coupling Method		Coupling Method	Result (Pass/Fail)	
L1-L2	0.5	Positive	Capacitive	Pass			
L1-L2	4 0.5 4	Negative	Capacitive	Pass			

13.4. PERFORMANCE & RESULT

□Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of
4	function is allowed below a performance level specified by the manufacturer, when the
Ó	apparatus is used as intended. In some cases the performance level may be replaced by a
	permissible loss of performance.

- ☑Criteria B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- ☐Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

	□ FAIL
--	--------

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is suced by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 30 of 35

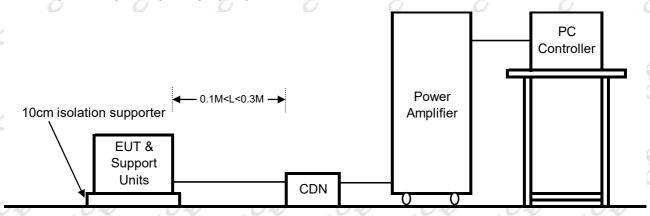
14. IEC 61000-4-6 TEST

IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELD

Port : Power Supply Lines

Basic Standard : IEC 61000-4-6:2013

Requirements : 3V with 80% AM. 1 kHz Modulation


Standard require : A

Tester: Sam LiuTemperature: 20° Humidity: 52%

14.1. TEST EQUIPMENT

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Power Amplifier	AR	150W1000	N/A	03/19/2018	03/18/2019
CDN	EM-Test	CNV504S1	N/A	03/19/2018	03/18/2019
Direction Coupler	EM-Test	DC2600N	N/A	03/19/2018	03/18/2019
EM-Clamp	EM-Test	EM101	N/A	03/19/2018	03/18/2019
Caliberation	EM-Test	CAM2/M3	N/A	03/19/2018	03/18/2019
Attenuator	EM-Test	ATT6/75	N/A	03/19/2018	03/18/2019
Power Sensor	AR	PH2000	N/A	03/19/2018	03/18/2019
Power Meter	AR	PM2002	N/A	03/19/2018	03/18/2019
Signal Generator	IFA O 4	2023A	N/A	03/19/2018	03/18/2019

14.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is sued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 31 of 35

14.3. TEST PROCEDURE

The EUT and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.

EUT worked with resistance load, and make sure EUT worked normally.

Related peripherals work during the test.

Setting the testing parameters of CS test software per IEC 61000-4-6.

Recording the test result in following table.

Test conditions:

Frequency Range: 0.15MHz-80MHz
Frequency Step: 1% of fundamental

Dwell Time: 1 sec

Range (MHz)	Strength	Modulation	Result (Pass/Fail)	
0.15-80	3V	AM A	Pass	

14.4. PERFORMANCE & RESULT

\boxtimes	Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of
	4	function is allowed below a performance level specified by the manufacturer, when the
	.0	apparatus is used as intended. In some cases the performance level may be replaced by a
		permissible loss of performance.

□Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or
0	loss of function is allowed below a performance level specified by the manufacturer, when the
a della	apparatus is used as intended. In some cases the performance level may be replaced by a
147	permissible loss of performance. During the test, degradation of performance is however
1.5	allowed.

□Criteria C:	Temporary loss of function is a	allowed,	provided the	functions self	recoverable or	can be restored
14	by the operation of controls.	04		,04	,04	,04

	DACC			
	⊠ PASS	⊔ <i>FAIL</i>		
	∠			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is such of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

East Notice Certification Dong

Page 32 of 35

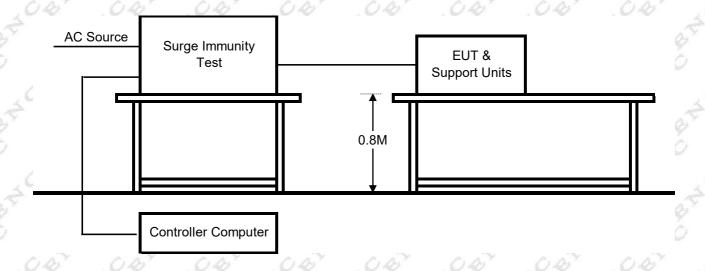
15. IEC 61000-4-8 TEST

POWER FREQUENCY ELECTROMAGNETIC FIELDS IMMUNITY TEST

Port : Enclosure

Basic Standard : IEC 61000-4-8:2009

Requirements : 50/60 Hz, 3A/m


Standard require : A

Tester: Sam LiuTemperature: 20° CHumidity: 52%

15.1. TEST EQUIPMENT

Description	Manufacturer Model		Identifier	Cal. Date	Cal. Due	
EMCPRO	KEYTEK	7105	N/A	03/19/2018	03/18/2019	
COIL	FCC	F-1000-4-8	N/A	03/19/2018	03/18/2019	

15.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 33 of 35

15.3. TEST PROCEDURE

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m × 1m). The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

Test Conditions:

Frequency	Polarity	Level	Observation	Meet Performance Criteria	
, O 50 Hz , O	ζ Oχ	3 A/m	Normal	ĮΦA , (
50 Hz	SY YOU	3 A/m	Normal	OAT ADAT	
50 Hz	Z	3 A/m	Normal	Α	

15.4. PERFORMANCE

- □Criteria B: The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- ☐Criteria C: Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

. 6/	. 6	. 6	. %/	. &	. 8.1	. 6./	6.
			PASS	□ FAIL			

The results shown in this test teport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

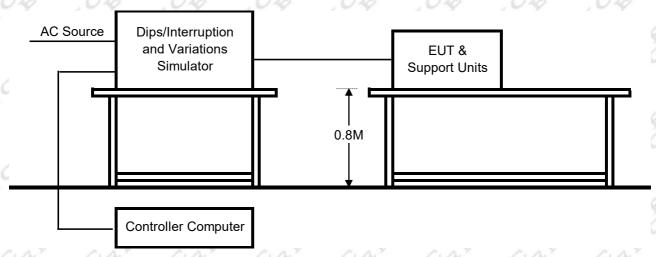
East Notice Certification

Page 34 of 35

16. IEC 61000-4-11 TEST

VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY TEST

Port : Power Supply Lines
Basic Standard : IEC 61000-4-11:2004


Requirements : 0, 45, 90, 135, 180, 225, 270, 315 degrees

Standard require: Min. 10 sec.Test Interval:: Sam LiuTemperature: 20° CHumidity: 52%

16.1. TEST EQUIPMENT

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Compact Generator	EM-Test	UCS500M	N/A	03/19/2018	03/18/2019
Capacitive Clamp	EM-Test	HY21-EFTC	N/A	03/19/2018	03/18/2019
CDN for Telecom Port	EM-Test	CNV504S1	N/A	03/19/2018	03/18/2019

16.2. BLOCK DIAGRAM OF TEST SETUP

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued of ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be a sessable and confirmed at http://www.enc-lab.com.

East Notice Certification

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com

Page 35 of 35

16.3. TEST PROCEDURE

The EUT and support units were located on a wooden table, 0.8 m away from ground floor. EUT worked with resistance load, and make sure EUT worked normally.

Setting the parameter of tests and then perform the test software of test simulator.

Conditions changes to occur at 0 degree crossover point of the voltage waveform.

Recording the test result in test record form.

Test conditions:

The duration with a sequence of three dips/interruptions with interval of 10 s minimum (Between each test event)

Voltage Dips and Interruptions:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Meet Performance Criteria	
0	100	0.5	Normal	В	
70	30	25	Normal	С	

16.4. PERFORMANCE

East Notice Certification

□Criteria A	: The apparatus continues to operate as intended. No degradation of performance or loss of
	function is allowed below a performance level specified by the manufacturer, when the
10	apparatus is used as intended. In some cases the performance level may be replaced by a
105	permissible loss of performance.

□Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or
	loss of function is allowed below a performance level specified by the manufacturer, when the
105	apparatus is used as intended. In some cases the performance level may be replaced by a
	permissible loss of performance. During the test, degradation of performance is however
45	allowed.

⊠Criteria C:	Temporary	loss of fund	ction is allowed	l, provided th	ne functions se	If recoverable o	r can be restored
	by the ope	ration of co	ntrols.				

1. 15	1. 15	1. 24	1. 18	1. 15	1. 1. 4	1. 19	1. 15
			⊠ PASS	□ FAI			

----END OF REPORT----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is suced by ENC, this document cannot be reproduced except in full with our prior written permission. The document is available on request and the brief information for its validation can be assessable and confirmed at http://www.enc-lab.com.

1/F, Haohui Commercial Building, Zhuji Street, Dongpu Town, Tianhe District, Guangzhou City Tel:+86-020-2331 4234 E-mail: enc@ enc-lab.com